Dynamic brain interactions during picture naming

Author:

Saravani Aram Giahi,Forseth Kiefer J.,Tandon NitinORCID,Pitkow XaqORCID

Abstract

AbstractBrain computations involve multiple processes by which sensory information is encoded and transformed to drive behavior. These computations are thought to be mediated by dynamic interactions between populations of neurons. Here we demonstrate that human brains exhibit a reliable sequence of neural interactions during speech production. We use an autoregressive hidden Markov model to identify dynamical network states exhibited by electrocorticographic signals recorded from human neurosurgical patients. Our method resolves dynamic latent network states on a trial-by-trial basis. We characterize individual network states according to the patterns of directional information flow between cortical regions of interest. These network states occur consistently and in a specific, interpretable sequence across trials and subjects: a fixed-length visual processing state is followed by a variable-length language state, and then by a terminal articulation state. This empirical evidence validates classical psycholinguistic theories that have posited such intermediate states during speaking. It further reveals these state dynamics are not localized to one brain area or one sequence of areas, but are instead a network phenomenon.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Aertsen A , Bonhoeffer T , Krüger J (1987) Coherent activity in neuronal populations: analysis and interpretation. Physics of cognitive processes pp. 1–34.

2. Partial directed coherence: a new concept in neural structure determination

3. A novel seizure detection algorithm informed by hidden markov model event states;Journal of Neural Engineering,2016

4. A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains;The Annals of Mathematical Statistics,1970

5. Category Specific Spatial Dissociations of Parallel Processes Underlying Visual Naming

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3