The dynamic transmission of positional information in stau- mutants during Drosophila embryogenesis

Author:

Yang Zhe,Zhu Hongcun,Kong KaKit,Chen Jiayi,Wu Xiaxuan,Li Peiyao,Jiang Jialong,Zhao Jingchao,Liu Feng

Abstract

AbstractIntriguingly, the developmental patterning during Drosophila embryogenesis is highly accurate and robust despite its dynamic changes and constant fluctuations. It has been suggested that Staufen (Stau) is key in controlling the boundary variability of the gap protein Hunchback (Hb). However, its underlying mechanism is still elusive. Here, we have developed methods to quantify the dynamic 3D expression of segmentation genes in Drosophila embryos. With improved control of measurement errors, our results reveal that the posterior boundary of the Hb anterior domain (xHb) of stau- mutants shows comparable variability to that of the wild type (WT) and shifts posteriorly by nearly 12% of the embryo length (EL) to the WT position in the nuclear cycle (nc) 14. This observed large shift might contribute significantly to the apparent large variability of xHb in previous studies. Moreover, for stau- mutants, the upstream Bicoid (Bcd) gradients show equivalent gradient noise to that of the WT in nc12-nc14, and the downstream Even-skipped (Eve) and cephalic furrow (CF) show the same positional errors as the WT. Our results indicate that threshold-dependent activation and self-organized filtering are not mutually exclusive but could both be implemented in early Drosophila embryogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3