cash4, a novel achaete-scute homolog induced by Hensen's node during generation of the posterior nervous system.

Author:

Henrique D,Tyler D,Kintner C,Heath J K,Lewis J H,Ish-Horowicz D,Storey K G

Abstract

In vertebrate embryos, the precursor cells of the central nervous system (CNS) are induced by signaling from the organizer region. Here we report the isolation of a novel vertebrate achaete-scute homolog, cash4, which is expressed in the presumptive posterior nervous system in response to such signaling. cash4 is first expressed in epiblast cells flanking the late-phase organizer (Hensen's node), which retains its ability to induce cash4 during regression to the caudal end of the embryo. We show that these node-derived signals can be mimicked in vivo by the activity of fibroblast growth factor (FGF). We demonstrate that cash4 can substitute for the achaete/scute genes in the fly and that it also has proneural activity in vertebrate embryos. Together these results suggest that cash4 functions as a proneural gene downstream of node-derived signals (including FGF) to promote the formation of the neural precursors that will give rise to the posterior CNS in the chick embryo.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference82 articles.

1. A Mammalian Helix-Loop-Helix Factor Structurally Related to the Product of Drosophila Proneural Gene atonal Is a Positive Transcriptional Regulator Expressed in the Developing Nervous System

2. The achaete-scute gene complex of Drosophila melanogaster comprises four homologous genes.;EMBO J.,1988

3. Induction of a second neural axis by the mouse node.;Development,1994

4. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.;Development,1993

5. Campos-Ortega, J. 1993. Early neurogenesis in Drosophila melanogaster. In The development of Drosophila melanogaster (ed. M. Bate and A. Martinez Arias), pp. 1091–1129. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3