Abstract
AbstractWe examined the associations between mitochondrial DNA haplogroups (MT-hg) and their interactions with a polygenic risk score based on nuclear-encoded mitochondrial genes (nMT-PRS) with risk of dementia and age of onset of dementia (AOO). Logistic regression was used to determine the effect of MT-hgs and nMT-PRS on dementia at baseline (332 controls / 204 cases). Cox proportional hazards models were used to model dementia AOO (n=1047; 433 incident cases). Additionally, we tested for interactions between MT-hg and nMT-PRS in the logistic and Cox models. MT-hg K and a one SD larger nMT-PRS were associated with elevated odds of dementia. Significant antagonistic interactions between the nMT-PRS and MT-hg K and T were observed. Individual MT-hg were not associated with AOO; however, a significant antagonistic interactions was observed between the nMT-PRS and MT-hg T and a synergistic interaction between the nMT-PRS and MT-hg V. These results suggest that MT-hgs influence dementia risk, and that variants in the nuclear and mitochondrial genome interact to influence the age of onset of dementia.HighlightsMitochondrial dysfunction has been proposed to influence dementia riskMT-hg K and T interacted with a genetic risk score to reduce dementia riskMT-hg T and V interacted with a genetic risk score to influence dementia age of onset
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献