Abstract
AbstractTranscription factor (TF) binding specificity is determined via a complex interplay between the TF’s DNA binding preference and cell type-specific chromatin environments. The chromatin features that correlate with TF binding in a given cell type have been well characterized. For instance, the binding sites for a majority of TFs display concurrent chromatin accessibility. However, concurrent chromatin features reflect the binding activities of the TF itself, and thus provide limited insight into how genome-wide TF-DNA binding patterns became established in the first place. To understand the determinants of TF binding specificity, we therefore need to examine how newly activated TFs interact with sequence and preexisting chromatin landscapes.Here, we investigate the sequence and preexisting chromatin predictors of TF-DNA binding by examining the genome-wide occupancy of TFs that have been induced in well-characterized chromatin environments. We develop Bichrom, a bimodal neural network that jointly models sequence and preexisting chromatin data to interpret the genome-wide binding patterns of induced TFs. We find that the preexisting chromatin landscape is a differential global predictor of TF-DNA binding; incorporating preexisting chromatin features improves our ability to explain the binding specificity of some TFs substantially, but not others. Furthermore, by analyzing site-level predictors, we show that TF binding in previously inaccessible chromatin tends to correspond to the presence of more favorable cognate DNA sequences. Bichrom thus provides a framework for modeling, interpreting, and visualizing the joint sequence and chromatin landscapes that determine TF-DNA binding dynamics.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献