Interactions between medial prefrontal cortex and dorsomedial striatum are necessary for odor span capacity in rats: role of GluN2B-containing NMDA receptors

Author:

Davies Don A.,Greba Quentin,Selk Jantz C.,Catton Jillian K.,Baillie Landon D.,Mulligan Sean J.,Howland John G.ORCID

Abstract

Working memory is involved in the maintenance and manipulation of information essential for complex cognition. While the neural substrates underlying working memory capacity have been studied in humans, considerably less is known about the circuitry mediating working memory capacity in rodents. Therefore, the present experiments tested the involvement of medial prefrontal cortex (mPFC) and dorsal striatum (STR) in the odor span task (OST), a task proposed to assay working memory capacity in rodents. Initially, Long Evans rats were trained to dig in scented sand for food following a serial delayed nonmatching-to-sample rule. Temporary inactivation of dorsomedial (dm) STR significantly reduced span in well trained rats. Inactivation of mPFC or contralateral disconnection of the mPFC and dmSTR also reduced span. Infusing the GluN2B-containing NMDA receptor antagonist Ro 25-6981 into mPFC did not affect span; however, span was significantly reduced following bilateral Ro 25-6981 infusions into dmSTR or contralateral disconnection of mPFC (inactivation) and dmSTR (Ro 25-6981). These results suggest that span capacity in rats depends on GluN2B-containing NMDA receptor-dependent interactions between the mPFC and the dmSTR. Therefore, interventions targeting this circuit may improve the working memory capacity impairments in patients with schizophrenia, Alzheimer's disease, and Parkinson's disease.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes for Health Research

Branch Out Neurological Foundation

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3