Dmc1 is a candidate for temperature tolerance during wheat meiosis

Author:

Draeger TracieORCID,Martin AzaharaORCID,Alabdullah Abdul KaderORCID,Pendle Ali,Rey María-DoloresORCID,Shaw PeterORCID,Moore Graham

Abstract

AbstractWe have assessed the effects of high and low temperatures on meiotic chromosome synapsis and crossover formation in the hexaploid wheat (Triticum aestivum L.) variety ‘Chinese Spring’. At low temperatures, asynapsis and chromosome univalence have been observed before in Chinese Spring lines lacking the long arm of chromosome 5D (5DL), which led to the proposal that 5DL carries a gene (Ltp1) that stabilises wheat chromosome pairing at low temperatures. In the current study, Chinese Spring wild type and 5DL interstitial deletion mutant plants were exposed to low (13°C) or high (30°C) temperatures in controlled environment rooms during a period from premeiotic interphase to early meiosis I. A 5DL deletion mutant was identified whose meiotic chromosomes exhibit extremely high levels of asynapsis and chromosome univalence at metaphase I after seven days at 13°C. This suggests that the mutant, which we name ttmei1 (temperature tolerance in meiosis 1) has a deletion of a gene that, like Ltp1, normally stabilises chromosome pairing at low temperatures. Immunolocalisation of the meiotic proteins ASY1 and ZYP1 on ttmei1 mutants showed that low temperature results in a failure to complete synapsis at pachytene. After 24 hours at 30°C, ttmei1 mutants exhibited a reduced number of crossovers and increased univalence, but to a lesser extent than at 13°C. KASP genotyping revealed that ttmei1 has a 4 Mb deletion in 5DL. Of 41 genes within this deletion region, the strongest candidate for the stabilisation of chromosome pairing at low (and possibly high) temperatures is the meiotic recombination gene Dmc1.Key messageThe meiotic recombination gene Dmc1 on wheat chromosome 5D has been identified as a candidate for the maintenance of normal chromosome synapsis and crossover at low and possibly high temperatures.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3