Widespread selection and gene flow shape the genomic landscape during a radiation of monkeyflowers

Author:

Stankowski SeanORCID,Chase Madeline A.ORCID,Fuiten Allison M.ORCID,Rodrigues Murillo F.ORCID,Ralph Peter L.ORCID,Streisfeld Matthew A.ORCID

Abstract

AbstractSpeciation genomic studies aim to interpret patterns of genome-wide variation in light of the processes that give rise to new species. However, interpreting the genomic ‘landscape’ of speciation is difficult, because many evolutionary processes can impact levels of variation. Facilitated by the first chromosome-level assembly for the group, we use whole-genome sequencing and simulations to shed light on the processes that have shaped the genomic landscape during a recent radiation of monkeyflowers. After inferring the phylogenetic relationships among the nine taxa in this radiation, we show that highly similar diversity (π) and differentiation (FST) landscapes have emerged across the group. Variation in these landscapes was strongly predicted by the local density of functional elements and the recombination rate, suggesting that the landscapes have been shaped by widespread natural selection. Using the varying divergence times between pairs of taxa, we show that the correlations between FST and genome features arose almost immediately after a population split and have become stronger over time. Simulations of genomic landscape evolution suggest that background selection (i.e., selection against deleterious mutations) alone is too subtle to generate the observed patterns, but scenarios that involve positive selection and genetic incompatibilities are plausible alternative explanations. Finally, tests for introgression among these taxa reveal widespread evidence of heterogeneous selection against gene flow during this radiation. Thus, combined with existing evidence for adaptation in this system, we conclude that the correlation in FST among these taxa informs us about the genomic basis of adaptation and speciation in this system.Author summaryWhat can patterns of genome-wide variation tell us about the speciation process? The answer to this question depends upon our ability to infer the evolutionary processes underlying these patterns. This, however, is difficult, because many processes can leave similar footprints, but some have nothing to do with speciation per se. For example, many studies have found highly heterogeneous levels of genetic differentiation when comparing the genomes of emerging species. These patterns are often referred to as differentiation ‘landscapes’ because they appear as a rugged topography of ‘peaks’ and ‘valleys’ as one scans across the genome. It has often been argued that selection against deleterious mutations, a process referred to as background selection, is primarily responsible for shaping differentiation landscapes early in speciation. If this hypothesis is correct, then it is unlikely that patterns of differentiation will reveal much about the genomic basis of speciation. However, using genome sequences from nine emerging species of monkeyflower coupled with simulations of genomic divergence, we show that it is unlikely that background selection is the primary architect of these landscapes. Rather, differentiation landscapes have probably been shaped by adaptation and gene flow, which are processes that are central to our understanding of speciation. Therefore, our work has important implications for our understanding of what patterns of differentiation can tell us about the genetic basis of adaptation and speciation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3