Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division

Author:

Bisson Filho Alexandre W.ORCID,Hsu Yen-Pang,Squyres Georgia R.ORCID,Kuru ErkinORCID,Wu FabaiORCID,Jukes Calum,Dekker CeesORCID,Holden SeamusORCID,VanNieuwenhze Michael S.,Brun Yves V.ORCID,Garner Ethan C.ORCID

Abstract

AbstractHow bacteria produce a septum to divide in two is not well understood. This process is mediated by periplasmic cell-wall producing enzymes that are positioned by filaments of the cytoplasmic membrane-associated actin FtsA and the tubulin FtsZ (FtsAZ). To understand how these components act in concert to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We find that the division septum is built at discrete sites that move around the division plane. Furthermore, FtsAZ filaments treadmill in circumferential paths around the division ring, pulling along the associated cell-wall-synthesizing enzymes. We show that the rate of FtsZ treadmilling controls both the rate of cell wall synthesis and cell division. The coupling of both the position and activity of the cell wall synthases to FtsAZ treadmilling guides the progressive insertion of new cell wall, synthesizing increasingly small concentric rings to divide the cell.One-sentence summaryBacterial cytokinesis is controlled by circumferential treadmilling of FtsAZ filaments that drives the insertion of new cell wall.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3