Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies

Author:

Gurbatri CandiceORCID,Coker Courtney,Hinchliffe Taylor E.,Lia Ioana,Castro Samuel,Treuting Piper M.,Arpaia NicholasORCID,Danino TalORCID

Abstract

ABSTRACTImmunotherapies such as checkpoint inhibitors have revolutionized cancer therapy yet lead to a multitude of immune-related adverse events, suggesting the need for more targeted delivery systems. Due to their preferential colonization of tumors and advances in engineering capabilities from synthetic biology, microbes are a natural platform for the local delivery of cancer therapeutics. Here, we present an engineered probiotic bacteria system for the controlled production and release of novel immune checkpoint targeting nanobodies from within tumors. Specifically, we engineered genetic lysis circuit variants to effectively release nanobodies and safely control bacteria populations. To maximize therapeutic efficacy of the system, we used computational modeling coupled with experimental validation of circuit dynamics and found that lower copy number variants provide optimal nanobody release. Thus, we subsequently integrated the lysis circuit operon into the genome of a probioticE. coliNissle 1917, and confirmed lysis dynamics in a syngeneic mouse model usingin vivobioluminescent imaging. Expressing a nanobody against PD-L1 in this strain demonstrated enhanced efficacy compared to a plasmid-based lysing variant, and similar efficacy to a clinically relevant monoclonal antibody against PD-L1. Expanding upon this therapeutic platform, we produced a nanobody against cytotoxic T-lymphocyte associated protein -4 (CTLA-4), which reduced growth rate or completely cleared tumors when combined with a probiotically-expressed PD-L1 nanobody in multiple syngeneic mouse models. Together, these results demonstrate that our engineered probiotic system combines innovations in synthetic biology and immunotherapy to improve upon the delivery of checkpoint inhibitors.SENTENCE SUMMARYWe designed a probiotic platform to locally deliver checkpoint blockade nanobodies to tumors using a controlled lysing mechanism for therapeutic release.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3