High Content and High Throughout Phenotypic Assay for the Hourly Resolution of the Malaria Parasite Erythrocytic Cycle

Author:

Bell Donald,Ridewood Sophie,Patel Asha P.,Hyeok Lee Sun,Chang Young-Tae,Deu Edgar

Abstract

AbstractOver the last 20 years increased funding for malaria research has resulted in very significant technical advances to study the biology of Plasmodium species. High throughput phenotypic assays have been developed to screen millions of compounds and identify small molecules with antiparasitic activity. At the same time, advances in malaria genetic have greatly facilitated the generation of genetically modified parasites, and whole genome genetic screens are now feasible in Plasmodium species. Finally, there has been an increased interest to study malaria parasites at the population level, in particular in the area of drug resistance. Drug resistant field isolates have been collected around the world, and drug resistant strains are routinely generated in the lab to study the mechanisms of drug resistance. As a result, one of the current bottlenecks in malaria research is our ability to quickly characterize the phenotype associated with compound treatment or genetic modification, or to quickly compare differences in intracellular development between strains. Here, we present a high content/high throughput phenotypic assay that combines highly selective RNA, DNA, and RBC membrane dyes to provide hourly resolution of the full erythrocytic cycle for both P. falciparum and P. knowlesi. A flow cytometry assay allows the analysis of samples in a 384-well format and a quick way to determine the parasite developmental stage. On the other hand, the fluorescence microscopy format allows for a detailed visualization of parasite morphology. Finally, using open source software we have developed protocols for the automated cluster analysis of microscopy images. This assay can be applied to any Plasmodium species, requires very little amount of sample, is performed with fixed cells, and is easily scalable. Overall, we believe this assay will be a great tool for the malaria community to study Plasmodium species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3