Integrated population genomic analysis and numerical simulation to estimate larval dispersal of Acanthaster cf. solaris between Ogasawara and other Japanese regions

Author:

Horoiwa Mizuki,Nakamura Takashi,Yuasa Hideaki,Kajitani Rei,Ameda Yosuke,Sasaki Tetsuro,Taninaka Hiroki,Kikuchi TaiseiORCID,Yamakita Takehisa,Toyoda AtsushiORCID,Itoh Takehiko,Yasuda Nina

Abstract

AbstractThe estimation of larval dispersal of marine species occurring on an ecological timescale is significant for conservation. In 2018, a semi-population outbreak of crown of thorns starfish, Acanthaster cf. solaris was observed on a relatively isolated oceanic island, Ogasawara. The aim of this study was to assess whether this population outbreak was caused by large-scale larval recruitment (termed secondary outbreak) from the Kuroshio region. We estimated larval dispersal of the coral predator A. cf. solaris between the Kuroshio and Ogasawara regions using both population genomic analysis and oceanographic dispersal simulation. Population genomic analysis revealed overall genetically homogenized patterns among Ogasawara and other Japanese populations, suggesting that the origin of the populations in the two regions is the same. In contrast, a simulation of 26-year oceanographic dispersal indicated that larvae are mostly self-seeded in Ogasawara populations and have difficulty reaching Ogasawara from the Kuroshio region within one generation. However, a connectivity matrix produced by the larval dispersal simulation assuming a Markov chain indicated gradual larval dispersal migration from the Kuroshio region to Ogasawara in a stepping-stone manner over multiple years. These results suggest that, while large-scale larval dispersal from an outbreak of the Kuroshio population spreading to the Ogasawara population within one generation is unlikely. This study also highlighted the importance of using both genomic and oceanographic methods to estimate larval dispersal, which provides significant insight into larval dispersal that occurs on ecological and evolutionary timescales.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3