SLAMP: A Rapid Fluorometric RT-LAMP Assay for Sensitive and Specific Detection of SARS-CoV-2 from Human Saliva

Author:

Bikos D. A.ORCID,Hwang C.,Brileya K. A.,Parker A.,Loveday E. K.,Rodriguez M.,LeFevre T.,Thornton I.,Wilking J. N.,Dills M.,Walk S. T.,Adams A. K.,Plowright R.,Hoegh A. B.,Carter J. R.,Morrow J.,Taylor M.,Keil D.,Fields M. W.,Chang C. B.

Abstract

AbstractRapid testing methods can identify outbreaks and trigger preventive strategies for slowing the spread of SARS-CoV-2, the virus that causes COVID-19. The “gold-standard” detection method for SARS-CoV-2 is reverse transcription quantitative polymerase chain reaction (RT-qPCR) performed on samples collected using a nasopharyngeal (NP) swab. While NP RT-qPCR provides high sensitivity, it requires trained personnel to administer and suffers from lengthy time-to-result. Recently, the testing community has turned to rapid saliva-based screening methods including saliva-to-RT-qPCR and/or saliva-to-RT-LAMP (reverse transcription loop-mediated isothermal amplification) to identify infected individuals regardless of symptomatic presentation. Here, we report a simple and rapid RT-LAMP fluorometric assay performed directly on heat-inactivated saliva, without the addition of buffers or proteinase K treatments we call saliva LAMP (SLAMP). Over the course of two days, a total of 243 individuals were tested using NP RT-qPCR, saliva-based qPCR, and saliva-based RT-LAMP. Of the 243 NP RT-qPCR tests, 65 were positive, 178 were negative, and SLAMP demonstrated a 91% sensitivity and 98% specificity. SLAMP sensitivity becomes 95% when samples negative in saliva tests while positive in NP RT-qPCR are excluded from evaluation, potentially indicating significant differences in viral titer between collection sites on the body. SLAMP is performed in triplicates and takes 45 min to run in the laboratory, requiring less technician time and instrument run time than NP RT-qPCR. These results demonstrate that saliva-based RT-LAMP can enable frequent and rapid screening of large numbers of people to identify pre-symptomatic and asymptomatic individuals thereby controlling outbreaks.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3