OCT2Hist: Non-Invasive Virtual Biopsy Using Optical Coherence Tomography

Author:

Winetraub YonatanORCID,Yuan EdwinORCID,Terem ItamarORCID,Yu Caroline,Chan Warren,Do Hanh,Shevidi Saba,Mao Maiya,Yu Jacqueline,Hong Megan,Blankenberg Erick,Rieger Kerri E.ORCID,Chu StevenORCID,Aasi SumairaORCID,Sarin Kavita Y.ORCID,de la Zerda AdamORCID

Abstract

Histological haematoxylin and eosin–stained (H&E) tissue sections are used as the gold standard for pathologic detection of cancer, tumour margin detection, and disease diagnosis1. Producing H&E sections, however, is invasive and time-consuming. Non-invasive optical imaging modalities, such as optical coherence tomography (OCT), permit label-free, micron-scale 3D imaging of biological tissue microstructure with significant depth (up to 1mm) and large fields-of-view2, but are difficult to interpret and correlate with clinical ground truth without specialized training3. Here we introduce the concept of a virtual biopsy, using generative neural networks to synthesize virtual H&E sections from OCT images. To do so we have developed a novel technique, “optical barcoding”, which has allowed us to repeatedly extract the 2D OCT slice from a 3D OCT volume that corresponds to a given H&E tissue section, with very high alignment precision down to 25 microns. Using 1,005 prospectively collected human skin sections from Mohs surgery operations of 71 patients, we constructed the largest dataset of H&E images and their corresponding precisely aligned OCT images, and trained a conditional generative adversarial network4 on these image pairs. Our results demonstrate the ability to use OCT images to generate high-fidelity virtual H&E sections and entire 3D H&E volumes. Applying this trained neural network to in vivo OCT images should enable physicians to readily incorporate OCT imaging into their clinical practice, reducing the number of unnecessary biopsy procedures.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3