Detection of pathogenic splicing events from RNA-sequencing data using dasper

Author:

Zhang David,Reynolds Regina H.,Garcia-Ruiz Sonia,Gustavsson Emil K,Sethi Sid,Aguti Sara,Barbosa Ines A.,Collier Jack J.,Houlden Henry,McFarland Robert,Muntoni Francesco,Oláhová Monika,Poulton Joanna,Simpson Michael,Pitceathly Robert D.S.ORCID,Taylor Robert W.,Zhou Haiyan,Deshpande Charu,Botia Juan A.ORCID,Collado-Torres Leonardo,Ryten Mina

Abstract

AbstractAlthough next-generation sequencing technologies have accelerated the discovery of novel gene-to-disease associations, many patients with suspected Mendelian diseases still leave the clinic without a genetic diagnosis. An estimated one third of these patients will have disorders caused by mutations impacting splicing. RNA-sequencing has been shown to be a promising diagnostic tool, however few methods have been developed to integrate RNA-sequencing data into the diagnostic pipeline. Here, we introduce dasper, an R/Bioconductor package that improves upon existing tools for detecting aberrant splicing by using machine learning to incorporate disruptions in exon-exon junction counts as well as coverage. dasper is designed for diagnostics, providing a rank-based report of how aberrant each splicing event looks, as well as including visualization functionality to facilitate interpretation. We validate dasper using 16 patient-derived fibroblast cell lines harbouring pathogenic variants known to impact splicing. We find that dasper is able to detect pathogenic splicing events with greater accuracy than existing LeafCutterMD or z-score approaches. Furthermore, by only applying a broad OMIM gene filter (without any variant-level filters), dasper is able to detect pathogenic splicing events within the top 10 most aberrant identified for each patient. Since using publicly available control data minimises costs associated with incorporating RNA-sequencing into diagnostic pipelines, we also investigate the use of 504 GTEx fibroblast samples as controls. We find that dasper leverages publicly available data effectively, ranking pathogenic splicing events in the top 25. Thus, we believe dasper can increase diagnostic yield for a pathogenic splicing variants and enable the efficient implementation of RNA-sequencing for diagnostics in clinical laboratories.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases

2. Rare-disease genetics in the era of next-generation sequencing: discovery to translation

3. Clinical sequencing: is WGS the better WES?

4. Diagnosing rare diseases after the exome;Cold Spring Harbor Molecular Case Studies,2018

5. Genome annotation for clinical genomic diagnostics: Strengths and weaknesses;Genome Medicine,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3