Characterisation of FADD interactome reveals novel insights into FADD recruitment and signalling at the Death Inducing Signalling Complex (DISC)

Author:

Fox Joanna LORCID,Dickens Laura S,Jukes-Jones Rebekah,Miles Gareth J,Langlais Claudia,Cain Kelvin,MacFarlane MarionORCID

Abstract

AbstractFas-associated death domain protein (FADD) plays a vital role in the extrinsic apoptotic pathway, where it forms an essential component of the death-inducing signaling complex (DISC). However, the precise early molecular events that facilitate recruitment of FADD to the DISC remain poorly defined. Using affinity purification and mass spectrometry we investigated the FADD interactome in untreated cells and following death receptor stimulation to identify novel FADD-interacting proteins. As expected, in death receptor-stimulated samples our analysis identified key components of the DISC such as Caspase-8. In addition, we identified novel binding partners including Transferrin Receptor 1 (TfR1) and Myosin Light Chain Kinase 2 (MYLK2) that are able to modulate FADD recruitment to the DISC and consequently downstream apoptotic signaling. TfR1 is pre-associated with FADD and recruited into the DISC; moreover, our data reveal that TfR1 is also pre-associated with the death receptors, TRAIL-R1 and TRAIL-R2, thereby functioning as a key regulator of DISC formation. In the case of MYLK2, specific binding of FADD to MYLK2 in non-apoptotic cells sequesters FADD from other DISC components ensuring aberrant apoptosis is not initiated. Furthermore, MYLK2 enzymatic activity is required to for it to translocate, in complex with FADD, to sites of DISC-mediated death receptor oligimerization. Taken together, our study highlights the important role that additional novel FADD binding partners play in the regulation of death receptor-mediated apoptotic cell death, in part by modulating FADD recruitment to the DISC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3