Abstract
AbstractPathophysiological damages and loss of function of dopamine neurons precedes their demise and contributes to the early phases of Parkinson’s disease. The presence of aberrant intercellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson’s disease. We employed multiple complementary approaches in molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein levels alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission prior to neuronal demise. These studies demonstrate that α-synuclein dysregulation of D2 receptor autoinhibition contributes to the vulnerability of dopaminergic neurons, and that modulation thereof can ameliorate the resulting pathophysiology. These novel findings provide mechanistic insights in the insidious loss of dopaminergic function and neurons that characterize Parkinson’s disease progression with significant therapeutic implications.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献