Impact of increased membrane realism on conformational sampling of proteins

Author:

Weigle Austin T.ORCID,Carr Matthew,Shukla DiwakarORCID

Abstract

ABSTRACTThe realism and accuracy of lipid bilayer simulations through molecular dynamics (MD) is heavily dependent on the lipid composition. While the field is pushing towards implementing more heterogeneous and realistic membrane compositions, a lack of high-resolution lipidomic data prevents some membrane protein systems from being modeled with the highest level of realism. Given the additional diversity of real-world cellular membranes and protein-lipid interactions, it is still not fully understood how altering membrane complexity affects modeled membrane protein function or if it matters over long timescale simulations. This is especially true for organisms whose membrane environments have little to no computational study, such as the plant plasma membrane. Tackling these issues in tandem, a generalized, realistic, and asymmetric plant plasma with more than 10 different lipid species membrane is constructed herein. Classical MD simulations of pure membrane constructs were performed to evaluate how altering the compositional complexity of the membrane impacted the plant membrane properties. The apo form of a plant sugar transporter, OsSWEET2b, was inserted into membrane models where lipid diversity was calculated in either a size-dependent or -independent manner. An adaptive sampling simulation regime validated by Markov-state models was performed to capture the gating dynamics of OsSWEET2b in each of these membrane constructs. In comparison to previous OsSWEET2b simulations performed in a pure POPC bilayer, we confirm that simulations performed within a native-like membrane composition alter the stabilization of apo OsSWEET2b conformational states by ~1 kcal/mol. The free energy barriers of intermediate conformational states decrease when realistic membrane complexity is simplified, albeit roughly within sampling error, suggesting that protein-specific responses to membranes differ due to altered packing caused by compositional fluctuations. This work serves as a case study where a more realistic bilayer composition makes unbiased conformational sampling easier to achieve than with simplified bilayers.

Publisher

Cold Spring Harbor Laboratory

Reference120 articles.

1. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale

2. Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology;J. Membr. Biol,2018

3. Computational Modeling of Realistic Cell Membranes;Chem. Rev,2019

4. Computer Simulations of Protein–Membrane Systems;Prog. Mol. Biol. Transl. Sci,2020

5. Efficient Preparation and Analysis of Membrane and Membrane Protein Systems;Biochim. Biophys. Acta BBA - Biomembr,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3