Plant Metabolic Network: A multi-species resource of plant metabolic information

Author:

Hawkins CharlesORCID,Ginzburg Daniel,Zhao Kangmei,Dwyer William,Xue Bo,Xu Angela,Rice SelenaORCID,Cole BenjaminORCID,Paley Suzanne,Karp Peter,Rhee Seung YonORCID

Abstract

AbstractPlant metabolism is a pillar of our ecosystem, food security, and economy. To understand and engineer plant metabolism, we first need a comprehensive and accurate annotation of all metabolic information across plant species. As a step towards this goal, we previously created the Plant Metabolic Network (PMN), an online resource of curated and computationally predicted information about the enzymes, compounds, reactions, and pathways that make up plant metabolism. Here we report PMN 15, which contains genome-scale metabolic pathway databases of 126 algal and plant genomes, ranging from model organisms to crops to medicinal plants, and new tools for analyzing and viewing metabolism information across species and integrating omics data in a metabolic context. We systematically evaluated the quality of the databases, which revealed that our semi-automated validation pipeline dramatically improves the quality. We then compared the metabolic content across the 126 organisms using multiple correspondence analysis and found that Brassicaceae, Poaceae, and Chlorophyta appeared as metabolically distinct groups. To demonstrate the utility of this resource, we used recently published sorghum transcriptomics data to discover previously unreported trends of metabolism underlying drought tolerance. We also used single-cell transcriptomics data from the Arabidopsis root to infer cell-type specific metabolic pathways. This work shows the continued growth and refinement of the PMN resource and demonstrates its wide-ranging utility in integrating metabolism with other areas of plant biology.One-sentence SummaryThe Plant Metabolic Network is a collection of databases containing experimentally-supported and predicted information about plant metabolism spanning many species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3