Abstract
AbstractNearly all human complex traits and diseases exhibit some degree of sex differences, with epigenetics being one of the main contributing factors. Various tissues display sex differences in DNA methylation, however this has not yet been explored in skeletal muscle, despite skeletal muscle being among the tissues with the most transcriptomic sex differences. For the first time, we investigated the effect of sex on autosomal DNA methylation in human skeletal muscle across three independent cohorts (Gene SMART, FUSION, and GSE38291) using a meta-analysis approach, totalling 369 human muscle samples (222 males, 147 females), and integrated this with known sex-biased transcriptomics. We found 10,240 differentially methylated regions (DMRs) at FDR < 0.005, 94% of which were hypomethylated in males, and gene set enrichment analysis revealed that differentially methylated genes were involved in muscle contraction and substrate metabolism. We then investigated biological factors underlying DNA methylation sex differences and found that circulating hormones were not associated with differential methylation at sex-biased DNA methylation loci, however these sex-specific loci were enriched for binding sites of hormone-related transcription factors (with top TFs including androgen (AR), estrogen (ESR1), and glucocorticoid (NR3C1) receptors). Fibre type proportions were associated with differential methylation across the genome, as well as across 16 % of sex-biased DNA methylation loci (FDR < 0.005). Integration of DNA methylomic results with transcriptomic data from the GTEx database and the FUSION cohort revealed 326 autosomal genes that display sex differences at both the epigenome and transcriptome levels. Importantly, transcriptional sex-biased genes were overrepresented among epigenetic sex-biased genes (p-value = 4.6e-13), suggesting differential DNA methylation and gene expression between male and female muscle are functionally linked. Finally, we validated expression of three genes with large effect sizes (FOXO3A, ALDH1A1, and GGT7) in the Gene SMART cohort with qPCR. GGT7, involved in antioxidant metabolism, displays male-biased expression as well as lower methylation in males across the three cohorts. In conclusion, we uncovered 8,420 genes that exhibit DNA methylation differences between males and females in human skeletal muscle that may modulate mechanisms controlling muscle metabolism and health.SignificanceThe importance of uncovering biological sex differences and their translation to physiology has become increasingly evident. Using a large-scale meta-analysis of three cohorts, we perform the first comparison of genome-wide skeletal muscle DNA methylation between males and females, and identify thousands of genes that display sex-differential methylation. We then explore intrinsic biological factors that may be underlying the DNA methylation sex differences, such as fibre type proportions and sex hormones. Leveraging the GTEx database, we identify hundreds of genes with both sex-differential expression and DNA methylation in skeletal muscle. We further confirm the sex-biased genes with gene expression data from two cohorts included in the methylation meta-analysis. Our study integrates genomewide sex-biased DNA methylation and expression in skeletal muscle, shedding light on distinct sex differences in skeletal muscle.
Publisher
Cold Spring Harbor Laboratory