Event-related and oscillatory signatures of response inhibition: A magnetoencephalography study with subclinical high and low impulsivity adults

Author:

Jauregi Ainara,Wang Hongfang,Hassel Stefanie,Kessler KlausORCID

Abstract

AbstractInhibition, the ability to withhold a response or to stop an initiated response, is a necessary cognitive function that can be vulnerable to an impairment. High levels of impulsivity have been shown to impact response inhibition and/or cognitive task performance. The present study investigated the spectral and spatio-temporal dynamics of response inhibition, during a combined go/no-go/stop-signal task, using magnetoencephalography (MEG) in a healthy undergraduate student population. Participants were divided by their level of impulsivity, as assessed by self-report measures, to explore potential differences between high (n=17) and low (n=17) impulsivity groups. Results showed that individuals scoring high on impulsivity failed significantly more NOGO and STOP trials than those scoring low, but no significant differences were found between stop-signal reaction times. During NOGO and STOP conditions, high impulsivity individuals showed significantly smaller M1 components in posterior regions, which could suggest an attentional processing deficit. During NOGO trials, the M2 component was found to be reduced in individuals scoring high, possibly reflecting less pre-motor inhibition efficiency, whereas in STOP trials, the network involved in the stopping process was engaged later in high impulsivity individuals. The high impulsivity group also engaged frontal networks more during the STOP-M3 component only, possibly as a late compensatory process. The lack of response time differences on STOP trials could indicate that compensation was effective to some degree (at the expense of higher error rates). Decreased frontal delta and theta band power was observed in high impulsivity individuals, suggesting a possible deficit in frontal pathways involved in motor suppression, however, unexpectedly, increased delta and theta band power in central and posterior sensors was also observed, which could be indicative of an increased effort to compensate for frontal deficits. Individuals scoring highly also showed decreased alpha power in frontal sensors, suggesting decreased inhibitory processing, along with reduced alpha suppression in posterior regions, reflecting reduced cue processing. These results provide evidence for how personality traits, such as impulsivity, relate to differences in the neural correlates of response inhibition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3