Joint identification of sex and sex-linked scaffolds in non-model organisms using low depth sequencing data

Author:

Nursyifa Casia,Brüniche-Olsen AnnaORCID,Erill Genis Garcia,Heller Rasmus,Albrechtsen Anders

Abstract

AbstractBeing able to assign sex to individuals and identify autosomal and sex-linked scaffolds are essential in most population genomic analyses. Non-model organisms often have genome assemblies at scaffold level and lack characterization of sex-linked scaffolds. Previous methods to identify sex and sex-linked scaffolds have relied on e.g. sequence similarity between the non-model organism and a closely related species or prior knowledge about the sex of the samples to identify sex-linked scaffolds. In the latter case, the difference in depth of coverage between the autosomes and the sex chromosomes are used. Here we present ‘Sex Assignment Through Coverage’ (SATC), a method to identify sample sex and sex-linked scaffolds from NGS data. The method only requires a scaffold level reference assembly and sampling of both sexes with whole genome sequencing (WGS) data. We use the sequencing depth distribution across scaffolds to jointly identify: i) male and female individuals and ii) sex-linked scaffolds. This is achieved through projecting the scaffold depths into a low-dimensional space using principal component analysis (PCA) and subsequent Gaussian mixture clustering. We demonstrate the applicability of our method using data from five mammal species and a bird species complex. The method is open source and freely available at https://github.com/popgenDK/SATC

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3