A multiplex microchamber diffusion assay for the antibody-based detection of microRNAs on randomly ordered microbeads

Author:

Geithe Christiane,Zeng Bo,Schmidt Carsten,Dinter Franziska,Roggenbuck Dirk,Lehmann Werner,Dame Gregory,Schierack Peter,Hanack Katja,Rödiger StefanORCID

Abstract

AbstractBackgroundMicroRNAs (miRNAs) are small, conserved, noncoding RNAs regulating gene expression that functions in RNA silencing and post-transcriptional regulation of gene expression. Altered miRNA profiles have been implicated in many human diseases, and due to their circulating abilities, they have excited great interest in their use as clinical biomarkers. The development of innovative methods for miRNA detection has become of high scientific and clinical interest.MethodsWe developed a diffusion-driven microbead assay and combined it with an antibody-based miRNA detection. The diffusion process was carried out in two different approaches a) co-diffusion of miRNA and antibodies (termed diffusion approach I, DAI) and b) diffusion of miRNA in an antibody-saturated environment (DAII). In both approaches, neutravidin-coated microbeads were loaded with specific biotinylated DNA capture probes, which targets either miR-21-5p, miR-30a-3p or miR-93-5p. The miRNAs were time- and dose-dependently detected in a diffusion microchamber by primary anti-DNA:RNA hybrid and fluorescence-labeled secondary antibodies using our in-house developed inverse fluorescence microscope imaging platform VideoScan.ResultsOur assay offers the advantage that several target molecules can be detected simultaneously and in real-time in one reaction environment (multiplex), without any amplification steps. We recorded the diffusion process over a period of 24 h and found that the reaction was almost completed after 2 h. The specificity of the assay was 96.7 % for DAI and 92.3 % for DAII. The detection limits were in a concentration range of 0.03-0.43 nM for DAI and 0.14-1.09 nM for DAII, depending on the miRNA.ConclusionThe miRNAs are successively exposed to the capture probe-loaded randomly ordered microbeads (p value of CSR 0.23-0.96), which leads to microbeads that become saturated with the target molecules first in front rows. Non-bonded miRNAs continue to diffuse further and can therefore subsequently bind to the microbeads with free binding sites. Our detection principle differs from other microbead assays, in which all microbeads are simultaneously mixed with the sample solution, so that all target molecules bind equally distributed to the microbeads, resulting in an averaged signal intensity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3