Label-free screening of brain tissue myelin content using phase imaging with computational specificity (PICS)

Author:

Fanous Michael,Shi Chuqiao,Caputo Megan P.,Rund Laurie A.,Johnson Rodney W.,Das Tapas,Kuchan Matthew J.,Sobh Nahil,Popescu Gabriel

Abstract

ABSTRACTInadequate myelination in the central nervous system is associated with neurodevelopmental complications. Thus, quantitative, high spatial resolution measurements of myelin levels are highly desirable. We used spatial light interference microcopy (SLIM), a highly sensitive quantitative phase imaging (QPI) technique, to correlate the dry mass content of myelin in piglet brain tissue with dietary changes and gestational size. We combined SLIM micrographs with an AI classifying model that allows us to discern subtle disparities in myelin distributions with high accuracy. This concept of combining QPI label-free data with AI for the purpose of extracting molecular specificity has recently been introduced by our laboratory as phase imaging with computational specificity (PICS). Training on nine thousand SLIM images of piglet brain tissue with the 71-layer transfer learning model Xception, we created a two-parameter classification to differentiate gestational size and diet type with an accuracy of 82% and 80%, respectively. To our knowledge, this type of evaluation is impossible to perform by an expert pathologist or other techniques.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3