On the predictability of postoperative complications for cancer patients: a Portuguese cohort study

Author:

Gonçalves DanielORCID,Henriques Rui,Lara Santos Lúcio,Costa Rafael S

Abstract

AbstractPostoperative complications following cancer surgeries are still hard to predict despite the historical efforts towards the creation of standard clinical risk scores. The differences among score calculators, contribute for the creation of highly specialized tools, with poor reusability in foreign contexts, resulting in larger prediction errors in clinical practice.This work aims to predict postoperative complications risk for cancer patients, offering two major contributions. First, to develop and evaluate a machine learning-based risk score, specific for the Portuguese population using a retrospective cohort of 847 cancer patients undergoing surgery between 2016 and 2018, predicting 4 outcomes of interest: i) existence of postoperative complications, ii) severity level of complications, iii) number of days in the Intermediate Care Unit (ICU), and iv) postoperative mortality within 1 year. An additional cohort of 137 cancer patients was used to validate the models. Second, to support the study with relevant findings and improve the interpretability of predictive models.In order to achieve these objectives, a robust methodology for the learning of risk predictors is proposed, offering new perspectives and insights into the clinical decision process. For postoperative complications the mean Receiver Operating Characteristic Curve (AUC) was 0.69, for complications’ severity mean AUC was 0.65, for the days in the ICU the Mean Absolute Error (MAE) was 1.07 days, and for one-year postoperative mortality the mean AUC was 0.74, calculated on the development cohort.In this study, risk predictive models which may help guide physicians at estimating cancer patient’s risk of developing surgical complications were developed. Additionally, a web-based decision support system is further provided to this end.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3