Identify phage hosts from metaviromic short reads based on deep learning and Markov chain model

Author:

Tan Jie,Fang Zhencheng,Wu Shufang,Guo Qian,Jiang Xiaoqing,Zhu HuaiqiuORCID

Abstract

AbstractPhages - viruses that infect bacteria and archaea - are dominant in the virosphere and play an important role in the microbial community. It is very important to identify the host of a given phage fragment from metavriome data for understanding the ecological impact of phage in a microbial community. State-of-the-art tools for host identification only present reliable results on long sequences within a narrow candidate host range, while there are a large number of short fragments in real metagenomic data and the taxonomic composition of a microbial community is often complicated. Here, we present a method, named HoPhage, to identify the host of a given phage fragment from metavirome data at the genus level. HoPhage integrates two modules using the deep learning algorithms and the Markov chain model, respectively. By testing on both the artificial benchmark dataset of phage contigs and the real virome data, HoPhage demonstrates a satisfactory performance on short fragments within a wide candidate host range at every taxonomic level. HoPhage is freely available at http://cqb.pku.edu.cn/ZhuLab/HoPhage/.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3