Alternative LC-MS/MS Platforms and Data Acquisition Strategies for Proteomic Genotyping of Human Hair Shafts

Author:

Goecker Zachary C.ORCID,Legg Kevin M.,Salemi Michelle R.,Herren Anthony W.,Phinney Brett S.ORCID,McKiernan Heather E.,Parker Glendon J.ORCID

Abstract

AbstractProtein is a major component of all biological evidence. Proteomic genotyping is the use of genetically variant peptides that contain single amino acid polymorphisms to infer the genotype of matching non-synonymous single nucleotide polymorphisms for the individual who originated the protein sample. This can be used to statistically associate an individual to evidence found at a crime scene. The utility of the inferred genotype increases as the detection of genetically variant peptides increases, which is the direct result of technology transfer to mass spectrometry platforms typically available. Digests of single (2 cm) human hair shafts from three European and two African subjects were analyzed using data dependent acquisition on a Q-Exactive™ Plus Hybrid Quadrupole-Orbitrap™ system, data independent acquisition and a variant of parallel reaction monitoring on a Orbitrap Fusion™ Lumos™ Tribrid™ system, and multiple reaction monitoring on an Agilent 6495 triple quadrupole system. In our hands, average genetically variant peptide detection from a selected 24 genetically variant peptide panel increased from 6.5 ± 1.1 and 3.1 ± 0.8 using data dependent and independent acquisition to 9.5 ± 0.7 and 11.7 ± 1.7 using parallel reaction monitoring and multiple reaction monitoring (p < 0.05). Parallel reaction monitoring resulted in a 1.3-fold increase in detection sensitivity, and multiple reaction monitoring resulted in a 1.6-fold increase in detection sensitivity. This increase in biomarker detection has a functional impact on the statistical association of a protein sample and an individual. Increased biomarker sensitivity, using Markov Chain Monte Carlo modeling, produced a median estimated random match probability of over 1 in 10 trillion from a single hair using targeted proteomics. For parallel reaction monitoring and multiple reaction monitoring, detected genetically variant peptides were validated by the inclusion of stable isotope labeled peptides in each sample, which served also as a detection trigger. This research accomplishes two aims: the demonstration of utility for alternative analytical platforms in proteomic genotyping, and the establishment of validation methods for the evaluation of inferred genotypes.HighlightsTest four mass spectrometry configurations to optimize detection of genetically variant peptidesTechnology transfer of proteomic genotyping assaysImproved sensitivity results in higher level of forensic discrimination for human identification using multiple reaction monitoringGraphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bone Proteomics Method Optimization for Forensic Investigations;Journal of Proteome Research;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3