Mitotic H3K9ac is controlled by phase-specific activity of HDAC2, HDAC3 and SIRT1

Author:

Gandhi Shashi,Mitterhoff Raizy,Rapoport Rachel,Eden Sharon,Goran Alon,Simon Itamar

Abstract

AbstractMitosis comprises multiple changes, including chromatin condensation and transcription reduction. Intriguingly, while histone acetylation levels are reduced during mitosis, the mechanism of this reduction is unclear. We studied the mitotic regulation of H3K9ac by using inhibitors of histone deacetylases. We evaluated the involvement of the targeted enzymes in regulating H3K9ac during mitotic stages and cytokinesis by immunofluorescence and immunoblots. We identified HDAC2, HDAC3 and SIRT1 as modulators of the mitotic levels of H3K9ac. HDAC2 inhibition increased H3K9ac levels in prophase, whereas HDAC3 or SIRT1 inhibition, increased H3K9ac levels in metaphase. Next, we performed ChIP-seq in mitotic cells following targeted inhibition of these histone deacetylases. While the genomic areas impacted by HDAC2 and HDAC3 were mostly concordant, a subset of loci were unique to each enzyme. Interestingly, HDAC3-specific targets were enriched for genes involved in mitosis regulation. Our results support a model in which H3K9 deacetylation is a stepwise process – at prophase HDAC2 modulates most transcription-associated H3K9ac-marked loci and at metaphase HDAC3 maintains the reduced acetylation, whereas SIRT1 potentially regulates H3K9ac by impacting HAT activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3