Molecular mechanism regulating transcriptional control of the hig toxin-antitoxin locus of antibiotic-resistance plasmid Rts1 from Proteus vulgaris

Author:

Pavelich Ian,Schureck Marc A.,Wang Dongxue,Hoffer Eric D.,Boamah Michelle,Onuoha Nina,Miles Stacey J.,Okafor C. Denise,Dunham Christine M.ORCID

Abstract

ABSTRACTRegulation of ubiquitous bacterial type II toxin-antitoxin (TA) gene pairs occurs via a negative feedback loop whereby their expression is typically responsive to changing levels of toxins at the transcriptional level similar to a molecular rheostat. While this mechanism can explain how certain TA complexes are regulated, accumulating evidence suggests diversity in this regulation. One system for which the negative feedback loop is not well defined is the plasmid-encoded HigBHigA TA pair originally identified in a post-operative infection with antibiotic resistant Proteus vulgaris. In contrast to other type II TA modules, each hig operator functions independently and excess toxin does not contribute to increased transcription in vivo. Structures of two different oligomeric complexes of HigBHigA bound to its operator DNA reveal similar interactions are maintained suggesting plasticity in how hig is repressed. Consistent with this result, molecular dynamic simulations reveal both oligomeric states exhibit similar dynamics. Further, engineering a dedicated trimeric HigBHigA complex does not regulate transcriptional repression. We propose that HigBHigA functions via a simple on/off transcriptional switch regulated by antitoxin proteolysis rather than a molecular rheostat. The present studies thus expand the known diversity of how these abundant bacterial protein pairs are regulated.IMPORTANCEBacteria respond to various stimuli by rapidly regulating gene expression to control growth. The diversity in how bacteria inhibit growth is exemplified by the abundance and diversity of toxin-antitoxin (TA) gene pairs. To tightly regulate their own expression, antitoxin proteins function as transcriptional autorepressors with additional regulation imparted by responsiveness of the system to toxin concentrations, similar to a molecular rheostat. However, some TAs do not appear to be responsive to changing levels of toxin. To expand our understanding of diverse TAs, we studied the regulation of a structurally distinct TA called host inhibition of growth (HigBA) originally discovered on the antibiotic resistance Rts1 plasmid associated with Proteus vulgaris. We find that the hig operon is regulated via a simple on/off transcriptional switch that is incalcitrant to changing toxin levels. These results expand the known mechanistic diversity of how TA pairs regulate their expression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3