Drivers of Rift Valley fever virus persistence and the impact of control measures in a spatially heterogeneous landscape: the case of the Comoros archipelago, 2004–2015

Author:

Tennant Warren S. D.ORCID,Cardinale EricORCID,Cêtre-Sossah Catherine,Moutroifi Youssouf,Le Godais Gilles,Colombi Davide,Spencer Simon E. F.ORCID,Tildesley Mike J.ORCID,Keeling Matt J.ORCID,Charafouddine Onzade,Colizza VittoriaORCID,Edmunds W. John,Métras RaphaёlleORCID

Abstract

AbstractRift Valley fever (RVF) is one of the many zoonotic arboviral haemorrhagic fevers present in Africa. The ability of the pathogen to persist in multiple geographically distinct regions has raised concerns about its potential for spread to and persistence within currently disease-free areas. However, the mechanisms for which RVF virus persistence occurs at both local and broader geographical scales have yet to be fully understood and rigorously quantified. Here, we developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago and fitted this model in a Bayesian framework to surveillance data conducted in livestock across those islands between 2004 and 2015. In doing so, we estimated the importance of island-specific environmental factors and animal movements between those islands on the persistence of RVF virus in the archipelago, and we further tested the impact of different control scenarios on reducing disease burden. We demonstrated that the archipelago network was able to sustain viral transmission over 10 years after assuming only one introduction event during early 2007. Movement restrictions were only useful to control the disease in Anjouan and Mayotte, as Grande Comore and Mohéli were able to self-sustain RVF viral persistence, probably due to local environmental conditions that are more favourable for vectors. We also evidenced that repeated outbreaks during 2004-2020 may have gone under-detected by local surveillance in Grande Comore and Mohéli. Strengthened longterm and coordinated surveillance would enable the detection of viral re-emergence and evaluation of different relevant vaccination programmes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3