A Deep Learning Model for Molecular Label Transfer that Enables Cancer Cell Identification from Histopathology Images

Author:

Su Andrew,Lee HoJoonORCID,Tan Xiao,Suarez Carlos J.,Andor Noemi,Nguyen QuanORCID,Ji Hanlee P.

Abstract

ABSTRACTDeep learning cancer classification systems have the potential to improve cancer diagnosis. However, development of these computational approaches depends on prior annotation through a pathologist. This initial step relying on a manual, low-resolution, time-consuming process is highly variable and subject to observer variance. To address this issue, we developed a novel method, H&E Molecular neural network (HEMnet). This two-step process utilises immunohistochemistry as an initial molecular label for cancer cells on a H&E image and then we train a cancer classifier on the overlapping clinical histopathological images. Using this molecular transfer method, we show that HEMnet accurately distinguishes colorectal cancer from normal tissue at high resolution without the need for an initial manual histopathologic evaluation. Our validation study using histopathology images from TCGA samples accurately estimates tumour purity. Overall, our method provides a path towards a fully automated delineation of any type of tumor so long as there is a cancer-oriented molecular stain available for subsequent learning. Software, tutorials and interactive tools are available at: https://github.com/BiomedicalMachineLearning/HEMnet

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3