Two promoters integrate multiple enhancer inputs to drive wild-type knirps expression in the D. melanogaster embryo

Author:

Li Lily,Waymack Rachel,Elabd Mario,Wunderlich ZebaORCID

Abstract

AbstractProper development depends on precise spatiotemporal gene expression patterns. Most genes are regulated by multiple enhancers and often by multiple core promoters that generate similar transcripts. We hypothesize that these multiple promoters may be required either because enhancers prefer a specific promoter or because multiple promoters serve as a redundancy mechanism. To test these hypotheses, we studied the expression of the knirps locus in the early Drosophila melanogaster embryo, which is mediated by multiple enhancers and core promoters. We found that one of these promoters resembles a typical “sharp” developmental promoter, while the other resembles a “broad” promoter usually associated with housekeeping genes. Using synthetic reporter constructs, we found that some, but not all, enhancers in the locus show a preference for one promoter. By analyzing the dynamics of these reporters, we identified specific burst properties during the transcription process, namely burst size and frequency, that are most strongly tuned by the specific combination of promoter and enhancer. Using locus-sized reporters, we discovered that even enhancers that show no promoter preference in a synthetic setting have a preference in the locus context. Our results suggest that the presence of multiple promoters in a locus is both due to enhancer preference and a need for redundancy and that “broad” promoters with dispersed transcription start sites are common among developmental genes. Our results also imply that it can be difficult to extrapolate expression measurements from synthetic reporters to the locus context, where many variables shape a gene’s overall expression pattern.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

1. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression

2. Conserved noncoding transcription and core promoter regulatory code in early Drosophila development;ELife,2017

3. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development

4. Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo;ELife,2015

5. Diversity and dynamics of the Drosophila transcriptome

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3