Salted roads lead to edema and reduced locomotor function in wood frogs

Author:

Frymus Lauren E.,Goedert Debora,Zamora-Camacho Francisco Javier,Smith Peter C.,Zeiss Caroline J.,Comas Mar,Abbott Timothy A.,Basu Silvia P.,DeAndressi Jason C.,Forgione Mia E.,Maloney Michael J.,Priester Joseph L.,Senturk Faruk,Szeligowski Richard V.,Tucker Alina S.,Zhang Mason,Calsbeek Ryan,Brady Steven P.ORCID

Abstract

AbstractHuman activities have caused massive losses of natural populations across the globe. Like many groups, amphibians have experienced substantial declines worldwide, driven by environmental changes such as habitat conversion, pollution, and disease emergence. Each of these drivers is often found in close association with the presence of roads. Here we report a novel consequence of roads affecting an amphibian native to much of North America, the wood frog (Rana sylvatica). Across 38 populations distributed from southern to central New England, we found that adult wood frogs living adjacent to roads had higher incidence and severity of edema (bloating caused by fluid accumulation) during the breeding season than frogs living away from the influence of roads. This effect was best explained by increased conductivity of breeding ponds, caused by runoff pollution from road salt used for de-icing. Edema severity was negatively correlated with locomotor performance in more northerly populations. Interestingly, northern populations experience more intense winters, which tends to result in more de-icing salt runoff and increased energetic demands associated with overwintering cryoprotection needs. Thus, this emerging consequence of roads appears to impose potential fitness costs associated with locomotion, and these effects might be most impactful on populations living in regions where de-icing is most intense.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3