A Two-Sample Robust Bayesian Mendelian Randomization Method Accounting for Linkage Disequilibrium and Idiosyncratic Pleiotropy with Applications to the COVID-19 Outcome

Author:

Wang Anqi,Liu Zhonghua

Abstract

ABSTRACTMendelian randomization (MR) is a statistical method exploiting genetic variants as instrumental variables to estimate the causal effect of modifiable risk factors on an outcome of interest. Despite wide uses of various popular two-sample MR methods based on genome-wide association study summary level data, however, those methods could suffer from potential power loss or/and biased inference when the chosen genetic variants are in linkage disequilibrium (LD), and also have relatively large direct effects on the outcome whose distribution might be heavy-tailed which is commonly referred to as the idiosyncratic pleiotropy phenomenon. To resolve those two issues, we propose a novel Robust Bayesian Mendelian Randomization (RBMR) model that uses the more robust multivariate generalized t-distribution (Arellano-Valle and Bolfarine, 1995) to model such direct effects in a probabilistic model framework which can also incorporate the LD structure explicitly. The generalized t-distribution can be represented as a Gaussian scaled mixture so that our model parameters can be estimated by the EM-type algorithms. We compute the standard errors by calibrating the evidence lower bound using the likelihood ratio test. Through extensive simulation studies, we show that our RBMR has robust performance compared to other competing methods. We also apply our RBMR method to two benchmark data sets and find that RBMR has smaller bias and standard errors. Using our proposed RBMR method, we find that coronary artery disease is associated with increased risk of critically ill coronavirus disease 2019 (COVID-19). We also develop a user-friendly R package RBMR (https://github.com/AnqiWang2021/RBMR) for public use.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. Ala-Luhtala, J. and Piché, R. (2016). Gaussian scale mixture models for robust linear multivariate regression with missing data. Communications in Statistics-Simulation and Computation, 45(3).

2. On some characterizations of the t-distribution;Statistics & Probability Letters,1995

3. Beal, M. J. et al. (2003). Variational algorithms for approximate Bayesian inference. University of London London.

4. Approximately independent linkage disequilibrium blocks in human populations

5. Variational inference: A review for statisticians;Journal of the American Statistical Association,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3