Abstract
AbstractHeretofore, little is known about the mechanism underlying the genotype-dependence of embryonic callus (EC) induction, which has severely inhibited the development of maize genetic engineering. Here, we report the genome sequence and annotation of a maize inbred line with high EC induction ratio, A188, which is assembled from single-molecule sequencing and optical genome mapping. We assembled a 2,210 Mb genome with a scaffold N50 size of 11.61 million bases (Mb), compared to those of 9.73 Mb for B73 and 10.2 Mb for Mo17. Comparative analysis revealed that ∼30% of the predicted A188 genes had large structural variations to B73, Mo17 and W22 genomes, which caused considerable protein divergence and might lead to phenotypic variations between the four inbred lines. Combining our new A188 genome, previously reported QTLs and RNA sequencing data, we reveal 8 large structural variation genes and 4 differentially expressed genes playing potential roles in EC induction.HighlightOur manuscript presents a high-quality reference genome of the inbred line A188, and provides new insights into candidate genes underlying maize embryonic callus induction and other maize agronomic traits.
Publisher
Cold Spring Harbor Laboratory