The force loading rate drives cell mechanosensing through both reinforcement and fluidization

Author:

Andreu Ion,Falcones Bryan,Hurst Sebastian,Chahare Nimesh,Quiroga Xarxa,Roux Anabel-Lise Le,Kechagia Zanetta,Beedle Amy E.M.,Elósegui-Artola Alberto,Trepat Xavier,Farré Ramon,Betz Timo,Almendros Isaac,Roca-Cusachs Pere

Abstract

AbstractCell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton undergoes fluidization and softens, decreasing loading rates and preventing reinforcement. By stretching rat lungsin vivo, we show that a similar phenomenon occurs at the organ level. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Role of Mechanotransduction in Vascular Biology

2. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

3. Balancing forces: architectural control of mechanotransduction

4. Schedin, P. & Keely, P. J . Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).

5. Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3