A realistic way to investigate the design, and mechanical properties of flow diverter stents

Author:

Velvaluri P.,Pravdivtseva M. S.,Hensler J.,Wodarg F.,Jansen O.,Quandt E.,Hövener J. B.

Abstract

AbstractPurposeBraided flow diverters (FD) are highly sophisticated, delicate, and intricate mechanical devices used to treat intracranial aneurysms and thus saving lives. Testing such devices in vitro, however, remains an unsolved challenge. Here, we evaluate methods that access flow, design, and mechanical properties in vitro.MethodsFlow properties, cell porosity, and cell area were evaluated by placing FDs in patient-derived, 3D printed models of human vasculature. 4D flow MRI was used to measure fluid dynamics. Laser microscopy was used to measure porosity and cell area with the top of aneurysm sac cut off for the model. New testing methods were developed to investigate the bending, circumferential, and longitudinal radial force continuously over varying diameters.ResultsThe placement and flow properties of the FD in the vasculature models were successfully measured by MRI, although artifacts occurred. The setup to measure porosity and cell area inside of the model proved successful. The newly discussed methods allowed us to measure the indicated forces, to our knowledge for the first time, continuously.ConclusionModern and specifically tailored techniques, some of which were presented here for the first time, allow detailed insights into the flow and mechanical properties of braided flow diverter stents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3