Integrated multi-omics investigations reveal the key role of synergistic microbial networks in removing plasticizer di-(2-ethylhexyl) phthalate from estuarine sediments

Author:

Wei Sean Ting-ShyangORCID,Chen Yi-Lung,Wu Yu-Wei,Wu Tien-Yu,Lai Yi-Li,Wang Po-Hsiang,Ismail WaelORCID,Lee Tzong-Huei,Chiang Yin-Ru

Abstract

AbstractDi-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer worldwide with an annual global production of over eight million tons. Because of its improper disposal, endocrine-disrupting DEHP often accumulates in estuarine sediments in industrialized countries at sub-millimolar levels, resulting in adverse effects on both ecosystems and human beings. The microbial degraders and biodegradation pathways of DEHP in O2-limited estuarine sediments remain elusive. Here, we employed an integrated meta-omics approach to identify the DEHP degradation pathway and major degraders in this ecosystem. Estuarine sediments were treated with DEHP or its derived metabolites, o-phthalic acid and benzoic acid. The rate of DEHP degradation in denitrifying mesocosms was two times slower than that of o-phthalic acid, suggesting that side-chain hydrolysis of DEHP is the rate-limiting step of anaerobic DEHP degradation. On the basis of microbial community structures, functional gene expression, and metabolite profile analysis, we proposed that DEHP biodegradation in estuarine sediments is mainly achieved through synergistic networks between denitrifying proteobacteria. Acidovorax and Sedimenticola are the major degraders of DEHP side-chains; the resulting o-phthalic acid is mainly degraded by Aestuariibacter through the UbiD-dependent benzoyl-CoA pathway. We isolated and characterized Acidovorax sp. strain 210-6 and its extracellular hydrolase, which hydrolyzes both alkyl side-chains of DEHP. Interestingly, genes encoding DEHP/MEHP hydrolase and phthaloyl-CoA decarboxylase—key enzymes for side-chain hydrolysis and o-phthalic acid degradation, respectively—are flanked by transposases in these proteobacterial genomes, indicating that DEHP degradation capacity is likely transferred horizontally in microbial communities.ImportanceXenobiotic phthalate esters (PAE) have been produced on a considerably large scale for only 70 years. The occurrence of endocrine-disrupting di-(2-ethylhexyl) phthalate (DEHP) in environments has raised public concern, and estuarine sediments are major DEHP reservoirs. Our multi-omics analyses indicated that complete DEHP degradation in O2-limited estuarine sediments depends on synergistic microbial networks between diverse denitrifying proteobacteria and uncultured candidates. Our data also suggest that the side-chain hydrolysis of DEHP, rather than o-phthalic acid activation, is the rate-limiting step in DEHP biodegradation within O2-limited estuarine sediments. Therefore, deciphering the bacterial ecophysiology and related biochemical mechanisms can help facilitate the practice of bioremediation in O2-limited environments. Furthermore, the DEHP hydrolase genes of active DEHP degraders can be used as molecular markers to monitor environmental DEHP degradation. Finally, future studies on the directed evolution of identified DEHP/MEHP hydrolase would bring a more catalytically efficient DEHP/MEHP hydrolase into practice.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3