Author:
Misko Albert,Weinstock Laura,Sankar Sitara,Furness Amanda,Grishchuk Yulia,Wood Levi B.
Abstract
AbstractMucolipidosis IV (MLIV) is an autosomal-recessive pediatric disease that leads to motor and cognitive deficits and loss of vision. It is caused by loss of function of the lysosomal channel transient receptor potential mucolipin-1 and is associated with an early pro-inflammatory brain phenotype, including increased cytokine expression. We thus hypothesized that peripheral blood cytokines would reflect inflammatory changes in the brain and would be linked to motor dysfunction. To test this, we collected plasma from MLIV patients and parental controls concomitantly with assessment of motor function using the Brief Assessment of Motor Function and Modified Ashworth scores. We found that MLIV patients had prominently increased cytokine levels compared to familial controls and identified profiles of cytokines correlated with motor dysfunction, including IFN-γ, IFN-α2, IL-17, IP-10. We found that IP-10 was a key differentiating factor separating MLIV cases from controls based on data from human plasma, mouse plasma, and mouse brain. Like MLIV patients, IL-17 and IP-10 were up-regulated in blood of symptomatic mice. Together, our data indicate that MLIV is characterized by increased blood cytokines, which are strongly related to underlying neurological and functional deficits in MLIV patients. Moreover, our data identify the interferon pro-inflammatory axis in both human and mouse signatures, suggesting an importance for interferon signaling in MLIV.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献