Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion

Author:

Muriel Olivia,Michon Laetitia,Kukulski WandaORCID,Martin Sophie GORCID

Abstract

AbstractCell-cell fusion is central to the process of fertilization for sexual reproduction. This necessitates the remodeling of peri-cellular matrix or cell wall material and the merging of plasma membranes. In walled fission yeast S. pombe, the fusion of P and M cells during sexual reproduction relies on the fusion focus, an actin structure that concentrates glucanase-containing secretory vesicles for local cell wall digestion necessary for membrane fusion. Here, we present a correlative light and electron microscopy (CLEM) quantitative study of a large dataset of 3D tomograms of the fusion site, which revealed the ultrastructure of the fusion focus as an actin-containing, vesicle-dense structure excluding other organelles. Unexpectedly, the data revealed asymmetries between the two gametes: M-cells exhibit a taut and convex plasma membrane that progressively protrudes into P-cells, which exhibit a more slack, wavy plasma membrane. These asymmetries are relaxed upon plasma membrane fusion, with observations of ramified pores that may result from multiple initiations or inhomogeneous expansion. We show that P-cells have a higher exo-to endocytosis ratio than M-cells, and that local reduction in exocytosis abrogates membrane waviness and compromises cell fusion significantly more in P-than M-cells. Reciprocally, reduction of turgor pressure specifically in M-cells prevents their protrusions into P-cells and delays cell fusion. Thus, asymmetric membrane conformations, which result from differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell-cell fusion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3