Growth-Rate Dependent And Nutrient-Specific Gene Expression Resource Allocation In Fission Yeast

Author:

Kleijn Istvan T.ORCID,Martínez-Segura AmaliaORCID,Bertaux FrançoisORCID,Saint MalikaORCID,Kramer HolgerORCID,Shahrezaei VahidORCID,Marguerat SamuelORCID

Abstract

ABSTRACTCellular resources are limited and their relative allocation to gene expression programmes determines physiological states and global properties such as the growth rate. Quantitative studies using various growth conditions have singled out growth rate as a major physiological variable explaining relative protein abundances. Here, we used the simple eukaryoteSchizosaccharomyces pombeto determine the importance of growth rate in explaining relative changes in protein and mRNA levels during growth on a series of non-limiting nitrogen sources. Although half of fission yeast genes were significantly correlated with the growth rate, this came alongside wide-spread nutrient-specific regulation. Proteome and transcriptome often showed coordinated regulation but with notable exceptions, such as metabolic enzymes. Genes positively correlated with growth rate participated in every level of protein production with the notable exception of RNA polymerase II, whereas those negatively correlated mainly belonged to the environmental stress response programme. Critically, metabolic enzymes, which represent ∼55-70% of the proteome by mass, showed mainly condition-specific regulation. Specifically, many enzymes involved in glycolysis and NAD-dependent metabolism as well as the fermentative and respiratory pathways were condition-dependent and not consistently correlated with growth. In summary, we provide a rich account of resource allocation to gene expression in a simple eukaryote, advancing our basic understanding of the interplay between growth-rate dependent and nutrient-specific gene expression.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3