Abstract
AbstractObjectivesObservational analyses suggest that high Bone Mineral Density (BMD) is a risk factor for osteoarthritis (OA); it’s unclear whether this represents a causal effect or shared aetiology and whether these relationships are body mass index (BMI)-independent. We performed bidirectional Mendelian randomization (MR) to uncover the causal pathways between BMD, BMI and OA.MethodsOne-sample (1S)MR estimates were generated by two-stage least-squares regression. Unweighted allele scores instrumented each exposure. Two-sample (2S)MR estimates were generated using inverse-variance weighted fixed-effects meta-analysis. Multivariable MR (MVMR), including BMD and BMI instruments in the same model, determined the BMI-independent causal pathway from BMD to OA. Latent causal variable (LCV) analysis, using weight-adjusted FN-BMD and hip/knee OA summary statistics, determined if genetic correlation explained the causal effect of BMD on OA.Results1SMR provided strong evidence for a causal effect of eBMD on hip and knee OA (ORhip =1.28[1.05,1.57],p=0.02, ORknee =1.40[1.20,1.63],p=3×10−5, OR per SD increase). 2SMR effect sizes were consistent in direction. Results suggested that the causal pathways between eBMD and OA were bidirectional (βhip=1.10[0.36,1.84],p=0.003, β knee =4.16[2.74,5.57],p=8×10−9, β=SD increase per doubling in risk). MVMR identified a BMI-independent causal pathway between eBMD and hip/knee OA. LCV suggested that genetic correlation (i.e. shared genetic aetiology) did not fully explain causal effects of BMD on hip/knee OA.ConclusionsThese results provide evidence for a BMI-independent causal effect of eBMD on OA. Despite evidence of bidirectional effects, the effect of BMD on OA did not appear to be fully explained by shared genetic aetiology, suggesting a direct action of bone on joint deterioration.
Publisher
Cold Spring Harbor Laboratory