Preferential selection and contribution of non-structural protein 1 (NS1) to the efficient transmission of the panzootic avian influenza H5N8 2.3.4.4 clades A and B viruses in chickens and ducks

Author:

Blaurock Claudia,Breithaupt Angele,Scheibner David,Bagato Ola,Karger AxelORCID,Mettenleiter Thomas C.,Abdelwhab Elsayed M.ORCID

Abstract

AbstractHighly pathogenic avian influenza viruses H5N8 clade 2.3.4.4 caused outbreaks in poultry at an unprecedented global scale. The virus was spread by wild birds in Asia in two waves: clade-2.3.4.4A in 2014/2015 and clade-2.3.4.4B since 2016 up to today. Both clades were highly virulent in chickens, but only clade-B viruses exhibited high virulence in ducks. Viral factors which contribute to virulence and transmission of these panzootic H5N8 2.3.4.4 viruses are largely unknown. The NS1 protein, typically composed of 230 amino acids (aa), is a multifunctional protein which is also a pathogenicity factor. Here, we studied the evolutionary trajectory of H5N8 NS1 proteins from 2013 to 2019 and their role in the fitness of H5N8 viruses in chickens and ducks. Sequence analysis and in-vitro experiments indicated that clade-2.3.4.4A and clade-2.3.4.4B viruses have a preference for NS1 of 237-aa and 217-aa, respectively over NS1 of 230-aa. NS217 was exclusively seen in domestic and wild birds in Europe. The extension of the NS1 C-terminus of clade-B virus reduced virus transmission and replication in chickens and ducks and partially impaired the systemic tropism to the endothelium in ducks. Conversely, lower impact on fitness of clade-A virus was observed. Remarkably, the NS1 of clade-A and clade-B, regardless of length, was efficient to block interferon induction in infected chickens and changes in the NS1 C-terminus reduced the efficiency for interferon antagonism. Together, the NS1 C-terminus contributes to the efficient transmission and high fitness of H5N8 viruses in chickens and ducks.ImportanceThe panzootic H5N8 highly pathogenic avian influenza viruses of clade 2.3.4.4A and 2.3.4.4B devastated poultry industry globally. Clade 2.3.4.4A was predominant in 2014/2015 while clade 2.3.4.4B was widely spread in 2016/2017. Both clades exhibited different pathotypes in ducks. Virus factors contributing to virulence and transmission are largely unknown. The NS1 protein is typically composed of 230 amino-acids (aa) and is an essential interferon (IFN) antagonist. Here, we found that the NS1 protein of clade 2.3.4.4A preferentially evolved toward long NS1 with 237-aa, while clade 2.3.4.4B evolved toward shorter NS1 with 217-aa (exclusively found in Europe) due stop-codons in the C-terminus (CTE). We showed that the NS1 CTE of H5N8 is required for efficient virus replication, transmission and endotheliotropism in ducks. In chickens, H5N8 NS1 evolved toward higher efficiency to block IFN-response. These findings may explain the preferential pattern for short NS1 and high fitness of the panzootic H5N8 in birds.Subject categoryAnimal, RNA Viruses

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3