Exploring the microdiversity within marine bacterial taxa: Towards an integrated biogeography in the Southern Ocean

Author:

Schwob GORCID,Segovia NI,González-Wevar CA,Cabrol L,Orlando J,Poulin E

Abstract

AbstractThe phylogeography traditionally correlates the genetic relationships among individuals within a macroorganism species, to their spatial distribution. Most microbial phylogeographic studies so far have been restricted to narrow geographical regions, mainly focusing on isolated strains, either obtained by culture or single-strain natural enrichments. However, the laborious culture-based methodology imposes a low number of studied individuals, leading to poor resolution of haplotype frequency estimation, making difficult a realistic evaluation of the genetic structure of natural microbial populations in the environment.To tackle this limitation, we present a new approach to unravel the phylogeographic patterns of bacteria combining (i) community-wide survey by 16S rRNA gene metabarcoding, (ii) intra-species resolution through the oligotyping method, and (iii) genetic and phylogeographic indices, as well as migration parameters, estimated from populational molecular data as traditionally developed for macroorganisms as models.As a proof-of-concept, we applied this methodology to the bacterial genusSpirochaeta, classically reported as a gut endosymbiont of various invertebrates inhabiting the Southern Ocean (SO), but also described in marine sediment and in open waters. For this purpose, we centered our sampling into three biogeographic provinces of the SO; maritime Antarctica (King George Island), sub-Antarctic Islands (Kerguelen archipelago) and Patagonia in southern South America. Each targeted OTU was chaLRracterized by substantial intrapopulation microdiversity, a significant genetic differentiation and a robust phylogeographic structure among the three distant biogeographic provinces. Patterns of gene flow inSpirochaetapopulations support the role of the Antarctic Polar Front (APF) as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current (ACC) appears as the main driver of connectivity between geographically distant sub-Antarctic areas such as Patagonia and Kerguelen archipelago, and between Kerguelen archipelago and maritime Antarctica. Additionnally, we found that historical processes (drift and dispersal limitation) together govern up to 86% of the spatial turnover amongSpirochaetapopulations. Overall, our approach represents a substantial first attempt to bridge the gap between microbial and macrobial ecology by unifying the way to study phylogeography. We revealed that strong congruency with macroorganisms patterns at the populational level shaped by the same oceanographic structures and ecological processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3