Binding of the Andes Virus Nucleocapsid Protein to RhoGDI Induces the Release and Activation of the Permeability Factor RhoA

Author:

Gorbunova Elena E.,Mackow Erich R.ORCID

Abstract

AbstractAndes virus (ANDV) nonlytically infects pulmonary microvascular endothelial cells (PMECs) causing acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients virtually every PMEC is infected, however the mechanism by which ANDV induces vascular permeability and edema remains to be resolved. The ANDV nucleocapsid (N) protein activates the GTPase, RhoA, in primary human PMECs causing VE-Cadherin internalization from adherens junctions and PMEC permeability. We found that ANDV N protein failed to bind RhoA, but co-precipitates RhoGDI (Rho GDP-dissociation inhibitor), the primary RhoA repressor that normally sequesters RhoA in an inactive state. ANDV N protein selectively binds the RhoGDI C-terminus (69-204) but fails to form ternary complexes with RhoA or inhibit RhoA binding to the RhoGDI N-terminus (1-69). However, we found that ANDV N protein uniquely inhibits RhoA binding to an S34D phosphomimetic RhoGDI mutant. Hypoxia and VEGF increase RhoA induced PMEC permeability by directing Protein Kinase Cα (PKCα) phosphorylation of S34 on RhoGDI. Collectively, ANDV N protein alone activates RhoA by sequestering and reducing RhoGDI available to suppress RhoA. In response to hypoxia and VEGF activated PKCα, ANDV N protein additionally directs the release of RhoA from S34-phosphorylated RhoGDI, synergistically activating RhoA and PMEC permeability. These findings reveal a fundamental edemagenic mechanism that permits ANDV to amplify PMEC permeability in hypoxic HPS patients. Our results rationalize therapeutically targeting PKCα and opposing Protein Kinase A (PKA) pathways that control RhoGDI phosphorylation as a means of resolving ANDV induced capillary permeability, edema and HPS.ImportanceHPS causing hantaviruses infect pulmonary endothelial cells causing vascular leakage, pulmonary edema and a 35% fatal acute respiratory distress syndrome (ARDS). Hantaviruses don’t lyse or disrupt the endothelium but dysregulate normal EC barrier functions and increase hypoxia directed permeability. Our findings reveal a novel underlying mechanism of EC permeability resulting from ANDV N protein binding to RhoGDI, a regulatory protein that normally maintains edemagenic RhoA in an inactive state and inhibits EC permeability. ANDV N sequesters RhoGDI and enhances the release of RhoA from S34 phosphorylated RhoGDI. These findings indicate that ANDV N induces the release of RhoA from PKC phosphorylated RhoGDI, synergistically enhancing hypoxia directed RhoA activation and PMEC permeability. Our data suggests inhibiting PKC and activating PKA phosphorylation of RhoGDI as mechanisms of inhibiting ANDV directed EC permeability and therapeutically restricting edema in HPS patients. These findings may be broadly applicable to other causes of ARDS.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3