Abstract
AbstractWhile numerous transgenic mouse strains have been produced to model the formation of amyloid-β (Aβ) plaques in the brain, efficient methods for whole-brain 3D analysis of Aβ deposits are lacking. Moreover, standard immunohistochemistry performed on brain slices precludes any shape analysis of Aβ plaques. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aβ plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified differences in signal intensity and 3D shape parameters: 3xTg displayed a different type of Aβ plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique, XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could thus become instrumental in quantifying the 3D spreading and the morphological impact of seeding when studying prion-like properties of Aβ aggregates in animal models of Alzheimer’s disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole rodent brain and in human autopsy brain tissue.HighlightsX-ray phase-contrast tomography (XPCT) enables whole brain detection of Aβ plaquesMorphometric parameters of Aβ plaques may be readily retrieved from XPCT dataNew shape parameters were successfully extracted from three Alzheimer’s disease modelsA Fiji-based “biologist-friendly” analysis workflow is proposed and sharedXPCT is a powerful virtual histology tool that requires minimal sample preparationGraphical abstract
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献