High resolution profiling of MHC-II peptide presentation capacity, by Mammalian Epitope Display, reveals SARS-CoV-2 targets for CD4 T cells and mechanisms of immune-escape

Author:

Obermair Franz Josef,Renoux Florian,Heer Sebastian,Lee Chloe,Cereghetti Nastassja,Maestri Giulia,Haldner Yannick,Wuigk Robin,Iosefson Ohad,Patel Pooja,Triebel Katherine,Kopf ManfredORCID,Swain Joanna,Kisielow JanORCID

Abstract

Understanding the mechanisms of immune evasion is critical for formulating an effective response to global threats like SARS-CoV2. We have fully decoded the immune synapses for multiple TCRs from acute patients, including cognate peptides and the presenting HLA alleles. Furthermore, using a newly developed mammalian epitope display platform (MEDi), we determined that several mutations present in multiple viral isolates currently expanding across the globe, resulted in reduced presentation by multiple HLA class II alleles, while some increased presentation, suggesting immune evasion based on shifting MHC-II peptide presentation landscapes. In support, we found that one of the mutations present in B1.1.7 viral strain could cause escape from CD4 T cell recognition in this way. Given the importance of understanding such mechanisms more broadly, we used MEDi to generate a comprehensive analysis of the presentability of all SARS-CoV-2 peptides in the context of multiple common HLA class II molecules. Unlike other strategies, our approach is sensitive and scalable, providing an unbiased and affordable high-resolution map of peptide presentation capacity for any MHC-II allele. Such information is essential to provide insight into T cell immunity across distinct HLA haplotypes across geographic and ethnic populations. This knowledge is critical for the development of effective T cell therapeutics not just against COVID-19, but any disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3