Self-organization of a doubly asynchronous irregular network state for spikes and bursts

Author:

Vercruysse FilipORCID,Naud Richard,Sprekeler Henning

Abstract

AbstractCortical pyramidal cells (PCs) have a specialized dendritic mechanism for the generation of bursts, suggesting that these events play a special role in cortical information processing. In vivo, bursts occur at a low, but consistent rate. Theory suggests that this network state increases the amount of information they convey. However, because burst activity relies on a threshold mechanism, it is rather sensitive to dendritic input levels. In spiking network models, network states in which bursts occur rarely are therefore typically not robust, but require fine-tuning. Here, we show that this issue can be solved by a homeostatic inhibitory plasticity rule in dendrite-targeting interneurons that is consistent with experimental data. The suggested learning rule can be combined with other forms of inhibitory plasticity to self-organize a network state in which both spikes and bursts occur asynchronously and irregularly at low rate. Finally, we show that this network state creates the network conditions for a recently suggested multiplexed code and thereby indeed increases the amount of information encoded in bursts.Author summaryThe language of the brain consists of sequences of action potentials. These sequences often contain bursts, short “words” consisting of a few action potentials in rapid succession. Bursts appear to play a special role in the brain. They indicate whether a stimulus was perceived or missed, and they are very effective drivers of synaptic plasticity, the neural substrate of learning. Bursts occur rarely, but consistently, a condition that is thought to maximize the amount of information they can communicate. In our article, we argue that this condition is far from self-evident, but requires very special circumstances. We show that these circumstances can be reached by homeostatic inhibitory plasticity in certain inhibitory neuron types. This may sound complicated, but basically works just like a thermostat. When bursts occur too often, inhibition goes up and suppresses them. When they are too rare, inhibition goes down and thereby increases their number. In computer simulations, we show that this simple mechanism can create circumstances akin to those in the brain, and indeed allows bursts to convey information effectively. Whether this mechanism is indeed used by the brain now remains to be tested by our experimental colleagues.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3