Exploring the short-term role of particulate matter in the COVID-19 outbreak in USA cities

Author:

Kamigauti Leonardo YoshiakiORCID,Palma Perez Gabriel MartinsORCID,Souto-Oliveira Carlos Eduardo,Cowdery Elizabeth,Hilário Nascimento Saldiva Paulo,de Fatima Andrade Maria

Abstract

AbstractThe role of particulate matter (PM) in the COVID-19 pandemic is currently being discussed by the scientific community. Long-term (years) exposure to PM is known to affect human health by increasing susceptibility to viral infections as well as to the development of respiratory and cardiovascular symptoms. In the short-term (days to months), PM has been suggested to assist airborne viral transmission. However, confounding factors such as urban mobility prevent causal conclusions. In this study, we explore short-term relationships between PM concentrations and the evolution of COVID-19 cases in a number of cities in the United States of America. We focus on the role of PM in facilitating viral transmission in early stages of the pandemic. We analyzed PM concentrations in two particle size ranges, < 2.5 µm, and between 10 and 2.5 µm (PM2.5 and PM10 respectively) as well as carbon monoxide (CO) and nitrogen dioxide (NO2). Granger causality analysis was employed to identify instantaneous and lagged effects of pollution in peaks of COVID-19 new daily cases in each location. The effect of pollution in shaping the disease spread was evaluated by correlating the logistic growth rate of accumulated cases with pollutants concentrations for a range of time lags and accumulation windows. PM2.5 shows the most significant results in Granger causality tests in comparison with the other pollutants. We found a strong and significant association between PM2.5 concentrations and the growth rate of accumulated cases between the 1st and 18th days after the report of the infection, peaking at the 8th day. By comparing results of PM2.5 with PM10, CO and NO2 we rule out confounding effects associated with mobility. We conclude that PM2.5 is not a first order effect in the cities considered; however, it plays a significant role in facilitating the COVID-19 transmission. We estimate that the growth rate of COVID-19 cases would be risen by 12.5% if PM2.5 is increased from 25 to 35 µg m−3.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3