A Data-driven Framework for Learning and Visualizing Characteristics of Thrombotic Event Phenotypes from Clinical Texts

Author:

Davoudi AnahitaORCID,Yang Audrey,Hwang Sy,Mowery Danielle L.ORCID

Abstract

AbstractAutomatically identifying thrombotic phenotypes based on clinical data, particularly clinical texts, can be challenging. Although many investigators have developed targeted information extraction methods for identifying thrombotic phenotypes from radiology notes, these methods can be time consuming to train, require large amounts of training data, and may miss subtle textual clues predictive of a thrombotic phenotype from notes beyond the radiology note. We developed a generalizable, data-driven framework for learning, characterizing, and visualizing clinical concepts from both radiology and discharge summaries predictive of thrombotic phenotypes.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

1. Stroke Facts [Internet]. 2020 [cited 2021 Jan 18]. Available from: https://www.cdc.gov/stroke/facts.htm

2. CDC. Data and Statistics on Venous Thromboembolism [Internet]. 2020 [cited 2021 Jan 18]. Available from: https://www.cdc.gov/ncbddd/dvt/data.html

3. What is the incidence of myocardial infarction (MI, heart attack) in the US? [ Internet]. 2020 [cited 2021 Jan 18]. Available from: https://www.medscape.com/answers/155919-15093/what-is-the-incidence-of-myocardial-infarction-mi-heart-attack-in-the-us

4. Document-level classification of CT pulmonary angiography reports based on an extension of the ConText algorithm

5. Heilbrun ME , Chapman BE , Narasimhan E , Patel N , Mowery DL . Feasibility of natural language processing–assisted auditing of critical findings in chest radiology. Journal of the American College of Radiology. 2019;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3